

DIRECT PHOTON PRODUCTION AT RHIC

Yoki Aramaki for the PHENIX Collaboration

RIKEN

PANIC11@MIT, USA July 24-29th, 2011

Direct photon

- Direct γ = Inclusive γ hadron decay γ
- Passes through the medium without the strong interaction
 - High p_T(>5 GeV/c): hard scattering (R_{AA}~ 1: N_{coll} scaling works)
 - Low p_T(p_T<3 GeV/c): Thermal radiation from hadron and QGP phases (Include fruitful information from QGP)
- Difficulty of measurement
 - Most of measured photons are from hadron decay products.
 - Photons from all stages after collisions are detected.

Direct photon spectra

Centrality dependence of direct photon yield

PHENIX, Phys.Rev.Lett.104,132301(2010)

- p+p
 - Consistent with NLO pQCD
- Au+Au
 - Excess at p_T<3 GeV/c
 - Exponential shape (consistent with thermal)
 - Centrality dependence of inverse slope is small.

Inverse slope

$$A \exp(-p_T / T) + T_{AA} \times A_{pp} (1 + p_T^2 / b)^{-n}$$

Exponential part

Binary-scaled p+p result

Centrality	$dN/dy \ (p_T > 1 \ \text{GeV}/c)$	T (MeV)	χ^2/DOF
0-20%	$1.50 \pm 0.23 \pm 0.35$	$221 \pm 19 \pm 19$	4.7/4
20-40%	$0.65 \pm 0.08 \pm 0.15$	$217 \pm 18 \pm 16$	5.0/3
Min. Bias	$0.49 \pm 0.05 \pm 0.11$	$233 \pm 14 \pm 19$	3.2/4

Direct photon spectra

at d+Au and p+p

- Excess in d+Au?
 - No exponential excess
- High-p_T direct photon results from PHENIX and STAR
 - d+Au
 - Agree with T_{AB} scaled pQCD
 - consistent with PHENIX and STAR
 - *p*+*p*
 - Agree with pQCD and PHENIX
- Low-p_T direct photon
 - No publication data at STAR

System size dependence of γ fraction

- γ fraction = Yield_{direct} / Yield_{inclusive}
- Largest excess above pQCD is seen at Au+Au.

Initial temperature at Au+Au

Theory calculations: d'Enterria, Peressounko, EPJ46, 451 Huovinen, Ruuskanen, Rasanen, PLB535, 109 Srivastava, Sinha, PRC 64, 034902 Turbide, Rapp, Gale, PRC69, 014903 Liu et al., PRC79, 014905 Alam et al., PRC63, 021901(R)

- Initial temperature T_i
 - 300 ~ 600 MeV (different assumptions)
 - Depends on thermalization time τ_0

Direct photon v_2

Expectation of direct photon v_2

Chatterjee, Srivastava, PRC79, 021901 (2009)

Thermal photon in quark matter

- v_2 >0 at low p_T
- v_2 ~0 at high p_T

• Thermalization time τ_0

- Early (smaller v₂)
- Late (larger v₂)

• Constrain τ_0

Measure v₂ at low p_T

Inclusive photon v_2

Calculation of direct photon v_2

- = inclusive photon v_2
 - background photon $v_2(\pi^0, \eta, ...)$

$$v_2^{dir.} = \frac{R_{\gamma} v_2^{inc.} - v_2^{BG}}{R_{\gamma} - 1}$$

Check for hadron contamination

- Direct measurement (black)
 - Identify photons with EMCals
 - Contain hadronic source at low p_T
- External conversions (blue)
 - Identify electron pair (γ→e+e-)
 from gamma conversion
- Good agreement at low p_T
 - No hadronic contamination

Inclusive photon and $\pi^0 v_2$

- $\pi^0 V_2$
 - similar to inclusive photon v_2
- Two interpretations
 - There are no direct photons
 - Direct photon v_2 is similar to inclusive photon v_2

Direct photon v_2

- *v*₂ at low p_T
 - ~15% at p_T=2.5GeV/c
- v₂ goes to 0 at high p_T
 - Hard scattered photons dominate

Theory Comparison: Direct photon v_2

- Larger v₂ than the prediction
 - Data: ~15% at p_T=2.5GeV/c
 - Model: \sim 5% at p_T=2.5 GeV/c
- Need help from theorists
 - There are not any models to reproduce the data
 - To constrain τ_0 with the improved models

Centrality dependence of direct photon V_2

Cent10-40% Phys. Rev. C77 (2008) 054901 v, EP (Full TPC) v₂ EP (Off-η) v₂ EP Method EP Method (Off-η) STAR Prelimina STAR, arXiv:1008.4894

• $v_2 \sim 0$ (independent of

High p_T (p_T>5 GeV/c)

- centrality)
- Consistent with STAR results within large error.
- Low p_T (p_T <3 GeV/c)
 - Inconclusive centrality dependence

Summary

- Direct photon yield
 - Large excess at p_T<3 GeV/c (big result at RHIC)
 - Not initial state effects
 - T_i = 300-600 MeV from hydro calculation
 - Above critical temperature (170 MeV) from lattice QCD calculation
- Direct photon v₂
 - Large positive v₂ at low p_T(<3 GeV/c)
 - Model underestimates the data
 - We expect the improvement of model to constrain τ_0
 - $v_2 \sim 0$ at high $p_T(>5-6 \text{ GeV}/c)$
 - Photons from hard scatterings are dominant source
 - Consistent with the interpretation of direct photon R_{AA}~1

Backups

Systematic error of direct photon v_2

TABLE I: Representative values of systematic uncertainties contributing to the direct photon v_2 measurement, shown for various p_T ranges for minimum bias collisions

Source	$1 3 \text{\'GeV}/c$	$1016\mathrm{\acute{G}eV}/c$	Type
inclusive $\gamma \ v_2$			
remaining hadrons	2.2%	N/A	A
v_2 extraction method	0.4%	0.6%	В
$\pi^0 v_2$			
particle ID	3.7%	6.0%	A
${f normalization}$	0.4%	7.2%	A
shower merging direct γ	N/A	4.0%	В
R_{γ}	3.1%	22%	A
common reaction plane	6.3%	6.3%	\mathbf{C}

PHENIX, arXiv:1105.4126

Comparison with other models

From Vicki's slide @ EPIC meeting, Jul.6-8, 2011

Holopainen, Räsänen, Eskola, arXiv:1104.5371v1